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Abstract. This paper gives a theory of non-retarded dispersion interaction energy of mole- 
cules with charge distributions on them that readily allows inclusion of higher-order multi- 
pole interactions. The two-particle dispersion energy for a pair of harmonic oscillators is 
evaluated for dipole-dipole, dipole-quadrupole and quadrupolequadrupole interactions. 
It also is found that the dispersion energy remains finite for all separations between the oscil- 
lators, supporting the earlier result of Mahanty and Ninham for dipole-dipole interactions 
with distributed dipole moments. 

1. Introduction 

Several papers have recently appeared concerned with calculating particle self-energies 
and the interaction energy between systems of two or more finite-sized particles (Mahanty 
and Ninham 1973,1975, Mahanty 1974, Mahanty and Richardson 1975). These papers 
are all based on the notion that the presence of other atoms near an atom perturbs the 
electronic charge density surrounding it, setting up a polarization density in the atom, 
which in turn produces an electromagnetic field to perturb the surrounding atoms. The 
change in the overall electromagnetic field modes is responsible for the dispersion inter- 
action energy between the atoms. 

One important aspect of these calculations is the evaluation of the dispersion energy 
between pairs of neutral atoms or molecules. Such energies are of importance in the 
calculation of the properties of rare gas liquids, for example. Mahanty and Ninham (1975) 
have indicated that the two-particle dispersion energy for the dipole-dipole interaction 
does not diverge at  zero separation if the finite size of the molecules is taken into account. 

In this paper is presented a more rigorous theory of dispersion energy than has 
previously been made based on the field mode theory of Mahanty and Ninham (1973, 
1975). The non-retarded limit, only, is considered here and we ignore the effect of 
permanent multipoles. The present theory readily lends itself to inclusion of higher- 
order multipole interactions than dipole-dipole and we present a two-particle dispersion 
energy calculation which incorporates dipole-quadrupole and quadrupole-quadrupole 
interactions as well. 

This paper is arranged as follows : in 0 2 we present the theory which will enable us to 
include higher-order multipoles in the dispersion interaction. At the end of the section 
we discuss the relation between the present expression for dispersion energy and the 
more usual result from time-independent perturbation on the Coulomb potential. In 
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0 3 we present the dipole+iipole, dipolequadrupole and quadrupole-quadrupole 
results for a pair of interacting harmonic oscillators and discuss some features of the 
results. 

2. Atom pair dispersion interaction energy 

Historically, the dispersion interaction between two molecules was evaluated using 
perturbation theory on the Coulomb interaction between the constituent electrons and 
nuclei. In recent literature it has been demonstrated that an equivalent formulation of 
the problem can be made in terms of the effect of the molecules on the electromagnetic 
field. The dispersion interaction between two atoms can be shown to arise from changes 
in the electromagnetic field modes and hence the zero-point energy associated with them, 
due to the presence of the two atoms having a finite separation. Fluctuations in the charge 
density associated with the electron cloud surrounding each atom lead to the existence of 
instantaneous multipoles on the atom (assumed to have no permanent multipole 
moment and spherical charge distribution in the ground state). The fields from these 
multipoles polarize the other atom and lead to some collective behaviour of the pair, 
giving the dispersion inte‘raction. In the past the calculations of the force involved have 
been made by assuming the multipoles are point multipoles located at the centre of 
each atom, fixed relative to the other. In the present work, by treating the charge 
density of each atom directly, we are able to obtain a form factor from the formalism 
which describes each multipole as having a finite size. The calculation avoids the use 
of time-independent perturbation theory on the Coulomb potential, but finds an 
expression for the electric field modes around the atoms by means of the atomic charge 
densities, which are written in a multipole expansion. 

The present calculation is summarized as follows: the potential at any point due to the 
atomic charge densities of both atoms is found by solving Poisson’s equation assuming 
each atomic charge density to be independent of the other. The resultant potential is 
used to perturb each atom’s charge density using time-dependent perturbation theory. 
An expression for the electric field at  any point is obtained in terms of these perturbed 
charge densities. The charge densities are then expanded in a multipole expansion which 
is linear in the field at  each atom and derivatives of the field. By evaluating the electric 
field at each atom, and finding its derivatives at each atom, one is able to obtain an 
infinite-dimension secular determinant which may be evaluated by truncating the 
multipole expansion to any desired order, to give the change in the modes of the field 
which cause the dispersion interaction. These modes are used to obtain an expression 
to order e4 (e = electronic charge) for the dispersion interaction energy. 

We now give the details of the calculation. 
Consider two neutral atoms, with no permanent multipoles in their ground states, 

at positions R I  and R , ,  with respective atomic charge densities p(r-R, ;o)  and 
p(r  - R ,  ; w). The non-retarded field equation for the atom pair is Poisson’s equation 

j =  1 

which has solution 

G(r-r‘;o)p(r’-Rj;o)d3r’ 
j =  1 
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$(U) = $&) + U . V,$(r) 

where C ( r ;  o) is the scalar Green function 

(8) 
a2 1 1 + - uiuj- +(r)  

r = R ,  2 ax iax j  r = R ,  
+ . . . . 

The electric field is the gradient of the scalar potential, equation (2), 

V , G ( r - r ' ; o ) p ( r ' - R j ; o ) d 3 r ' .  
j =  1 

(4) 

We must now obtain a secular equation to determine the altered field modes which 
result from the perturbation of one atomic charge cloud by the other. To do this we 
express the charge density on the right-hand side of equation (4) by a time-dependent 
perturbation series in which all terms are linear in the electric field or its derivatives. The 
charge density of either atom is perturbed by the time-dependent perturbation which 
represents the change in electromagnetic field due to the presence of the other atom : 

where f ( t )  is a real function of time. For a single-electron atom this reduces to e$(r) f ( t )  
where e is the electronic charge, as the contribution from the nucleus to the integral is 
zero. Details of the calculation, for the one-electron atom, of the first-order perturbation 
on the charge density are given in appendix 1. To first order the charge density may be 
written 

(6) 

where, for the one-electron atom, 

p(r ; w )  = poo(r)  + p l k ;  0) eiW' 
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expansion, how terms of the secular determinant may be obtained. Then the electric 
field, equation (4), at r = Ri is written 

where we have performed the integral over r' in equation (4). g1 l(r; U) is a 3 x 3 dyadic 
Green function, which shows several interesting features. Note the presence of the matrix 
element (Ole-E-'ln). This matrix element represents a form factor and gives to each 
multipole, represented by the matrix element multiplied with it, a finite-size value. For 
the more common case where point multipoles are assumed, is replaced by the 
first-order term - ik . U. Under these circumstances the Green function becomes of the 
form 

where G(r) is given in equation (3), and a(o) is a polarizability tensor. 
As shown below, this expression applies to the time-independent perturbation 

calculations (eg Margenau and Kestner 1971, Meath 1972) and allows a rigorous defi- 
nition of the polarizability a(w). The form of polarizability chosen by Mahanty and 
Ninham (1975) is based on the concept of a finite multipole size, but in that paper no 
attempt was made to show the k-dependence of the polarizability in any rigorous sense, 
as has been done here. It is the use of a finite-sized multipole which leads to a finite 
energy (shown to quadrupole order in the next section) as the atoms are brought to 
coincidence (R = R1 - R ,  = 0) and this result gives twice the zero-point energy of a 
single atom, represented here by the case when Ri = R j  in equation (10). 

In describing the finite-sized property of the dipole we have assumed that other 
multipoles are similarly of finite size. In fact, it is readily shown that the matrix element 
(Ole-"*'ln) appears in all terms of the expression for b ( R i ;  U), ie if we do not truncate 
the multipole expansion at the dipole term. We may generalize equation (10) in the form 
of an expansion in the electric field and its derivatives, making use of the multipole 
expansion, equation (8), giving 

b ( R i ; o )  = -47~ 

where the first term gives the dipole term as in equation (9) and g12 has (Oluln) of %l , 
replaced by (Oluu,~n),  etc. 

In a similar manner, V, k(r ; w)lr= R ,  and the higher-order terms are obtained by taking 
the gradient evaluated at r = Ri of the right-hand side of equation (12). When written 
in matrix form, we thus obtain an infinite-dimension secular equation 

II+411%21 = 0 (13) 



1832 D D Richardson 

where 59, is a dyadic Green function which has 3 x 3 submatrices given by Fill of 
equation (lo), g1,. ..,g1,,... of equation (12), gZl = V,9311(r-Ri)l,.=R, etc. 

Following Mahanty and Ninham (1975) the dispersion energy of the atom pair can 
be defined as the change in the zero-point energy of the electromagnetic field due to the 
two atoms, which is given by 

where the denominator represents the sum of self-energies of the individual atoms, 
the Green functions 3 ( R j ,  R,;  U )  being given by the submatrices of 9, with Ri = R j ,  
and the contour is taken over the positive real axis. 

Making use of the expansion 

the two-particle dispersion energy to leading order (ie to order e4 in electronic charge) is 

d o  Tr(’%(R1, R , ;  o)%(R,, R ,  ; U)). 

The present derivation of the two-atom dispersion energy differs considerably 
from the more usual method which makes use of time-independent perturbation theory 
on the Coulomb potential to second order (see, for example, Margenau and Kestner 
1971, chap 2). We shall complete this section with a discussion of the relation between 
the two results. 

For a system of two neutral single-electron atoms, with no permanent multipoles, 
and with centre a t  Ri, i = 1,2, so R = R ,  - R ,  as above, and electrons at u1 and u2 
respectively, the Coulomb potential is given by the multipole expansion (Podolsky and 
Kunz 1969) 

where 

and e is electronic charge. The factor 1/R may be written as the Green function, equation 
(3), above. 

Performing time-independent perturbation on the potential, equation (17), with 
unperturbed wavefunctions taken as Heitler-London wavefunctions formed from the 
product of single-atom wavefunctions, it can be shown that the first non zero term is 
the second-order term, which is written as the dispersion energy 

where the excited state [A) = Inl)ln2) in terms of single-atom states, and 

Eo - E ,  = (EL’ ) - E, , )  + (EL’’ - E n Z )  

for single-atom ground and excited states EL’), EL,) and E , , ,  En2 .  The matrix element 
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V,, is given by 

m,n 

We now consider only the dipole4ipole term (m = n = 1) of the multipole expansion, 
equation (17). As only the electron coordinates u1  and u2 operate on the atomic wave- 
functions, we may write 

vo, = 4n(@)Ie2(u1 * V R ~ ) ( U Z  - VR2)G(RI -R,)In1n2) 

= 47t e2(01uiIni) - VR,VR,G(Ri -R2)  (Ot~zInz).  (20) 

The sum over 1 is now taken as separate sums over each single-electron atom states. 
The Green function for our present calculation, for the point dipole case, is given from 

equation (1 1) as 

We require the trace of the product of the Green function, equation (21), for evalua- 
tion of the dispersion energy. The latter may then be written from equation (16) as 

where U! is the ith component of the matrix element (Oluln,) and Gji  is the ijth component 
of VRVRG(R) and the factor e2/h is included in Gji  (see equation (10)). 

On the other hand, the dispersion energy from time-independent perturbation theory 
is given from equation (20) and equation (18) as 

where the symbols have the same meaning as for equation (22) and e2/h has been included 
in the Green function. We now make use of a frequency-dependent representation for 
equation (23) (see Margenau and Kestner 1971, p 58) to write 

where the contour in the last integral encloses the positive real axis. The equivalence 
with equation (22) found from the present method is immediately obvious. It should be 
noted that equation (22) is obtained from the use of -ik.  U for e-"'.' which is the same 
as assuming the dipoles in the system are point dipoles. 

Hence for point dipoles the results of the two methods are identical. The use of a 
finite-sized dipole (and higher-order multipoles) leads to a lack of divergence of the dis- 
persion energy as the separation (R) between atoms goes to zero, as noted earlier. The 
present method is shown in the next section to yield the same R dependence for dipole- 
dipole, dipole-quadrupole and quadrupole-quadrupole interactions in the large-R 
limit, as the time-independent calculation (see, eg, Margenau and Kestner 1971, Meath 
1972). From the equivalence of equations (22) and (24), this is to be expected. 
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The present method has much wider applicability than the time-independent per- 
turbation method, however. Apart from the ability to introduce finite multipole size in a 
consistent manner, when the theory is extended to the retarded-field case the dipole- 
dipole term yields the Casimir-Polder results for large R, a result which cannot be ob- 
tained from the original form of the time-independent perturbation approach dealing 
with the Coulomb interaction terms. 

3. Examples and discussion 

In this section we present a very simple example to illustrate the features of the present 
calculation. Although no attempt is made to rigorously describe any real physical 
system, a scheme for calculation is suggested which may be applied to atoms with excited 
states well separated from the ground state. 

The main difficulty in estimating the dispersion energy E ,  from equation (16) is 
the evaluation of the Green functions occurring in equation (12) which involves the sum 
over the (unperturbed) excited states In) of each atom (see equation (9) for the dipole 
term, for example). One must also make a choice of suitable atomic wavefunctions, but 
this problem will not be discussed in the present work. 

An important aspect of the sum over single-atom states emerges when the part in 
large parentheses of equation (9) (and similar terms for higher orders) becomes separable 
into space and time parts. The sum may then be written in the form a(w)f(k) which allows 
one to represent the polarizability a(w) and the form factor f(k) phenomenologically to 
fit experimental observation of the dispersion force. Such a model has wide applications ; 
for example, in the study of the interaction of a macroscopic particle with a dielectric 
slab and other interactions with macroscopic objects. Mahanty (1974) and Mahanty 
and Ninham (1973,1975) have made use of such a model where a(w) is taken as scalar 
and the form factor f(k) is made isotropic, with a Gaussian distribution. 

Several approaches to evaluation of the sum over atomic states like that in equation 
(9) are possible. Dalgarno (1963) has presented a general scheme for evaluation of the 
sum. A simpler method, suggested by Dalgarno (1961) is to approximate the sum by 
taking a single excited state and replacing the sum over n by only one term, depending 
on the dominant optical transition for the system of interest. We will make use of another 
method in which it is assumed the excited states may be described by a single effective 
excited state so, eg, uon in equation (9) is replaced by an effective frequency E. Use is 
then made of the completeness of single-atom excited state wavefunctions to write 

n 

Then one simply has to make a choice of suitable ground state wavefunctions for 
each atom. 

In what follows we present results of a calculation ofdipole-dipole, dipole-quadrupole 
and quadrupole-quadrupole interaction contributions to dispersion energy E ,  for 
‘atoms’ with a 1s ground state described by an harmonic oscillator wavefunction (Morse 
and Feshbach 1953) 

where a = ( h / m ~ ) ’ / ~  represents the ‘size’ of the oscillator. 
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We truncate the multipole series, equation (S), at the quadrupole term and evaluation 
of the Green functions of the electric field, equation (12), up to 9 1 4 ,  and derivatives of 
these, enables the evaluation of the trace in equation (16) for the two-atom dispersion 
energy. For the wavefunction of equation (26) as the ground state and making use of 
the assumption of an effective excited state represented by 0, so equation (25) may be 
used, we obtain the dipole4ipole (DD), quadrupole-dipole and dipolequadrupole (DQ), 
and quadrupole-quadrupole (QQ) two-atom dispersion energies as follows : 

E 2 ( ~ )  = ---( 3h -$$l(0))a:a:R-loFlo(R) e4a2a2 
(29) 

where a ,  and a2 are the 'sizes' of atoms 1 and 2 respectively, R = IR, -R21 and 1(0) is 
an integral over frequency, 

The functions F6( R) ,  Fa( R )  and F, o(R)  are given by 

Note from equations (27)-(30) that the frequency dependence of all terms is identical 
and independent of the term of the multipole expansion, under the assumptions we have 
made. It will also be remarked that the function F6(R), equation (31), is identical with 
that of Mahanty and Ninham (1975) and we may infer that the polarizability tensor 
chosen by them corresponds to the assumptions we have made. As these authors have 
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found for the dipoledipole interaction, we conclude that the simple R - 6 ,  R - 8 ,  R - l o  
dependence of the respective multipole interactions is modified for R N a by the func- 
tions F,(R), F8(R) and Flo(R). 

For the limit of small R, 

as found by Mahanty and Ninham (1975) and 

Thus we have demonstrated the assertion made in Q 2 that the effect of the form factor 
e- i&.u in equation (10) is to remove the divergence at the origin, although this region is 
of little physical interest as exchange and monopole forces will dominate. For large R ,  
however, we find F6(R) -+ 1, giving the London result, F,(R) -+ 7 and F,,(R) -+ 9. The 
latter two values, from a calculation of time-independent perturbation theory including 
all states of the harmonic oscillator, are 5 for F,(R) and 30.625 for F,,(R) (Margenau 
and Kestner 1971). Thus the contribution of higher-order terms of the multipole ex- 
pansion is reduced under our approximation which uses equation (25). It is expected 
from the discussion at  the end of the last section, when carried over to higher-order 
multipoles, that if the sum over single-atom states In) were performed exactly, the cor- 
respondence with the perturbation calculation would be much closer. Our assumption 
of a single effective excited state is not very good for a harmonic oscillator where the 
separation between the energies of states of different principal quantum number is equal. 
The method will apply best to atoms where the excited states are close together relative 
to their separation from the ground state. 

In figure 1 we have plotted for a,  = a2 = a,  curves of (a6/R6)F6(R), (aa/R8)Fs(R) and 
(alo/R1o)Flo(R) against Ria. For comparison the curve of a6/R6 against Rja is also 
drawn. The energy scale is in arbitrary units. The figure illustrates the points made 
earlier about non-divergence as R 4 0 and shows the asymptotic limit of (a6/R6)F6(R) 
giving the London result a6/R6. Note the minimum in the DQ curve at  0.72(R/a), though 
in this region, as stated above, other forces will dominate. For R N 3a the asymptotic 
result for the dipole-dipole interaction, equation (34), is good to about 0.5%. 

4. Conclusion 

In this paper we have presented a more rigorous theory of dispersion interaction energy 
by the direct calculation of electric field modes than previously given (Mahanty and 
Ninham 1973, 1975, Mahanty 1974). The theory given is only applicable to situations 
of non-retarded electromagnetic fields, although extension to the retarded situation is 
possible. Some results for a two-particle harmonic oscillator model are presented to 
illustrate the theory, taking advantage of the ease with which higher-order multipoles 
than dipoles may be included in the expression for the dispersion energy to find results 
for dipole-quadrupole and quadrupole-quadrupole interactions, as well as the dipole- 
dipole interaction. It is found that the dipole4ipole result, for the simple example used, 
has the same functional form for dispersion energy as Mahanty and Ninham (1975). 
It is also found that the dipolequadrupole and quadrupole-quadrupole interactions 
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Rlo 

Figure 1. Plots of multipole contributions to the dispersion energy of two harmonic oscil- 
lators, as a function of R/a where R is the separation between oscillators and a the 'size' of 
the oscillator. The energy scale is in arbitrary units. The curves are as follows: full curve, 
dipole4ipole a6R-  6F6(R);  dotted curve, dipole-quadrupole asR-'Fs(R) ; broken curve, 
quadrupolequadrupole a'OR- I0Flo(R);  open circles, London result (dipole-dipole) 
a6R - 6 .  

leave the dispersion energy finite as the separation between atoms ( R )  goes to zero, as 
was found for the dipole-dipole case earlier (Mahanty and Ninham 1975). The removal 
of the divergence as R goes to zero is the result of the multipoles having a finite size. For 
large separation R,  the R dependence of the dispersion energy agrees with the point 
multipole results. 

For the present theory, use of quantum theory to calculate the dispersion energy has 
been avoided, unlike the perturbation approach as used, for example, by Meath (1972), 
and perturbation theory has only been applied to the charge density of the atoms as a 
result of a scalar potential perturbation. The present calculation is thus a semi-classical 
formulation of the dispersion energy. 

In appendix 2 is presented a brief discussion of the use of a vector potential in the 
non-retarded case, and it is shown that in this limit the result is equivalent to that used 
in this paper. To treat the retarded-field problem, the choice ofgauge becomes important. 
It is most convenient to choose the Lorentz gauge and work with a vector potential. 
Then equation (A.11) for the wave equation is modified to include time dependence of 
the vector potential and so the Green function (A.14) is also altered. Other relations 
will also differ to include retardation, and the form of the perturbation used in appendix 1 
will be described in terms of a vector potential. In principle, the theory is solvable on 
similar lines to the present work. It has been solved for the special case of a separable 
polarizability by Mahanty and Ninham (1975). 
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Appendix 1. Perturbation calculation of charge density 

For computational convenience we consider a time-dependent Hamiltonian which 
perturbs each atom in the system via the scalar potential 4(r) as 

s1 = e+(r)eiwr. ('4. 1) 

The physical response will be given as the real part of the response due to 2,. In 
equation (A. l), e is the electronic charge and o the frequency of the field. The unperturbed 
state equation is defined as 

s o u n  = E,u,. 

The perturbed wavefunctions are expanded in the unperturbed ones 

$(r, t )  = 1 an(t)un(r) e- iwnr ('4.2) 
n 

where on = EJA. Putting ('4.2) in the time-dependent Schrodinger equation we obtain 

e 
u,(t) = -1 (nl&m) eiwr e-iomntam(t). ('4.3) 1h n 

We assume that in zeroth order 

ao(t) = 1 

an(t) = 0, n # 0. 

Then, in first order 
e 

an(t) = ,(nl4lO> f ei" e-iwont dt 

$(r, t )  = uo(r)eiwot+ih c (n1410) J' eiw'e-i"On' dtu,(r) e-ionr. 

('4.4) 

( '4.5) 

- m  
and e 

n - 0 0  

For an observable B the expectation value is, to first order, 

( B )  = ($lBl$) 

= Boo+:- ((OIBln>(nl4iO> SIm eiw'e-iwon7d~eiwon1 
n 

- (Ol4ln) (nlBIO) eior eiwon7 d7 e-ioOnr 
m 

m 

= Boo +[ eiwrG(t - z) dr  
J - m  

where 

and e(z) is a step function which is unity for o > 0 and zero otherwise. Now the change 
in the expectation value of B due to the perturbation is 

m 

6 ( B )  = eiwrG(t - 7) dz = eiWrG(o) 
- m  
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where the Fourier transform G(w) of G(t) is 

which is obtained by completing the time integral and using equation (A.7). 
For the application in this paper we are interested in summing over all frequencies, 

which we do in equation (14), and hence it is sufficient to consider 6 ( B )  as given by 
equation (AA), rather than the real part of this. 

If we associate the operator B with the charge density, we may associate it with the 
operator ed(r-r'). From (A$), then, the first-order change in the charge density will 
have time dependence eiot and from Poisson's equation the first-order change in 4, 
+l ( r ,  w) in equation (A.23) will also have eiot time dependence. The perturbation result 
for the charge density is given from (A.9) in equation (A.20). 

The current density J(r-r ' )  may be associated with the operator (Bohm 1969) 
(Ae/2mi)(6(r - r')Vr, + Vr.6(r -r'))  so the first-order change in current density from (A.9) is 

The perturbation -eu assumed by Mahanty and Ninham (1973) is a correct repre- 
sentation of the polarization only to first order. In fact, the polarization may be expanded 
in a series of which - eu is the first term (de Groot and Suttorp 1972). The present treat- 
ment is equivalent to treating the full series. 

Appendix 2 

In this appendix is presented a brief analysis of the use of the vector potential to obtain 
the electric field around an atom pair to enable closer comparison with the earlier work 
of Mahanty and Ninham (1973, 1975). We will show that use of the vector potential 
leads to an identical result with the above scalar potential calculation, as it should in the 
non-retarded limit. 

The vector potential wave equation in this limit is 

4n 
V;A(r, w) = --J(r,  w) (A. 11) 

for speed of light c, and J the current density of the system. For the two-particle case 
J(r, w) should be replaced by 

E J ( r - R j ; o )  

C 

2 

j =  1 

in (A.l l ) ,  and the procedure may be carried through as for the single-atom example given 
here. 

The aim of this appendix is to demonstrate that in the non-retarded limit, use of the 
vector potential equation (A.11) is equivalent to use of the scalar potential equation (1). 
We may show this by means of the continuity equation 

1 aP 
at 

v . J + -  - = 0 (A.12) 
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which we use to demonstrate the validity of the Lorentz condition 

1 a4 
at 

V . A+- - = 0. 

From equation (A.11) the vector potential is given as 

After integration by parts we find 

(A.13) 

(A.14) 

(A.15) 

Now from quantum mechanics the divergence ofcurrent density in terms of the system 
wavefunction is 

h a v * J = -($*V2$ - $V2$*) = -($*$) 2mi at 

from Schrodinger’s equation. 
Hence 

(A. 16) 

(A. 17) 

where the charge density 

p(r’) = $*(r’)$(r’). (A.18) 
We have already shown that from Poisson’s equation the scalar potential is 

for a single particle. 
Hence from equation (A.17) 

and the Lorentz condition is satisfied. 
Making use of appendix 1, equation (A.8), the charge density is given by 

e’ 
h p(r, w) = poo(r)  -- eiW* 

(01+ - r M >  <nl4(ulO> + (nl4u - 410) <OI4(u)ln) 
m0n + w 

to first order, then 

P(r) = iopl(r) 
where pl(r) is the second term of equation (A.20). It may also be shown that 

q5(r;w) = - 
4x J e*i2-r‘) 

___ (poo(r’)+eiuup,(r‘; co))d3r‘ = q50(r)++l(r; w)eio’ 
(27d3 

(A.19) 

(A.20) 
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so 

Now the electric field is given as 

(A.21) 

We may eliminate 4 from equation (A.21) using the Lorentzcondition equation (A.13), 

ic 1 aA 
S = - V ( V .  A ) - - - - V 4 0  

W c at 

which becomes, in the non-retarded limit 

ic 
8 = - V 4 , - - V ( V .  A).  

W 

This result is identical with the more usual result 

8 = -vd , l -vq50 .  

(A.22) 

(A.23) 

In the work presented in this paper we are interested only in the change in the electric 
field from its unperturbed value of - V d 0  so we drop this term from equations (A.22) 
and (A.23). 

Hence use of a vector potential wave equation leads to the same electric field as for a 
scalar potential wave equation, in the non-retarded limit. For the retarded-field case 
a scalar potential theory is inadequate and it is necessary to use the procedure outlined 
in this section, with equation (A . l l )  modified to include the time dependence of A 
which will now be significant. Other relations are accordingly modified. 
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